Amirhossein Kazerouni

I'm a

About

I am a Ph.D. candidate in Computer Science at the University of Toronto, working under the supervision of Michael Brudno and Babak Taati. I am also a graduate researcher at the Vector Institute.


My research explores the synergy between generative models and 3D reconstruction, focusing on 3D data generation, representation, and editting.


I hold a Bachelor of Science in Electrical Engineering from the Iran University of Science and Technology. I am always eager to discuss research ideas and collaborate on exciting projects. Feel free to reach out!


πŸ“„ [My CV]

Experience


  • Research Intern, Samsung Research America (SRA), Toronto, Canada
  • Graduate Research Assistant, University of Toronto, Toronto, Canada
  • Graduate Research Assistant, Vector Institute, Toronto, Canada
  • Remote Research Assistant, RWTH University, Aachen, Germany
  • Co-founderAIR Center, Tehran, Iran
  • B.Sc. in Electrical Engineering, Iran University of Science and Technology, Iran
  • May 2025 - Present
  • Jan. 2024 - Present
  • Jan. 2024 - Present
  • Mar. 2022 - Jan. 2024
  • Jul. 2020 - Jul. 2022
  • Sep. 2017 - Feb. 2022

News

Publications

LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding

Amirhossein Kazerouni, Soroush Mehraban, Michael Brudno, Babak Taati

Conference: ICCV 2025

Project Page | Paper

MedScale-Former visual teaser

MedScale-Former: Self-guided multiscale transformer for medical image segmentation

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Dorit Merhof

Journal: Medical Image Analysis (MedIA)

Paper

SUM visual teaser

SUM: Saliency Unification through Mamba for Visual Attention Modeling

Alireza Hosseini*, Amirhossein Kazerouni*, Saeed Akhavan, Michael Brudno, Babak Taati

Conference: WACV 2025 | Oral presentation

Project Page | Paper | GitHub

FuseNet visual teaser

FuseNet: Self-Supervised Dual-Path Network for Medical Image Segmentation

Amirhossein Kazerouni, Sanaz Karimijafarbigloo, Reza Azad, Yury Velichko, Ulas Bagci, Dorit Merhof

Conference: ISBI 2024

Paper | GitHub

INCODE visual teaser

INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings

Amirhossein Kazerouni, Reza Azad, Alireza Hosseini, Dorit Merhof, Ulas Bagci

Conference: IEEE/CVF WACV 2024

Project Page | Paper | GitHub

Deformable Large Kernel Attention visual teaser

Beyond Self-Attention: Deformable Large Kernel Attention for Medical Image Segmentation

Reza Azad, Leon Niggemeier, Michael Huttemann, Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Yury Velichko, Ulas Bagci, Dorit Merhof

Conference: IEEE/CVF WACV 2024

Paper | GitHub

Laplacian-Former visual teaser

Laplacian-Former: Overcoming the Limitations of Vision Transformers in Local Texture Detection

Reza Azad, Amirhossein Kazerouni, Babak Azad, Ehsan Khodapanah Aghdam, Yury Velichko, Ulas Bagci, Dorit Merhof

Conference: MICCAI 2023

Paper | GitHub

WaveFormer visual teaser

Unlocking Fine-Grained Details with Wavelet-based High-Frequency Enhancement in Transformers

Reza Azad, Amirhossein Kazerouni, Alaa Sulaiman, Afshin Bozorgpour, Ehsan Khodapanah Aghdam, Abin Jose, Dorit Merhof

Conference: MICCAI 2023 MLMI Workshop

Paper | GitHub

DermoSegDiff visual teaser

DermoSegDiff: A Boundary-aware Segmentation Diffusion Model for Skin Lesion Delineation

Afshin Bozorgpour*, Yousef Sadegheih*, Amirhossein Kazerouni*, Reza Azad, Dorit Merhof

Conference: MICCAI 2023 PRIME Workshop

Paper | GitHub

SSCT visual teaser

Self-supervised Semantic Segmentation: Consistency over Transformation

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Yury Velichko, Ulas Bagci, Dorit Merhof

Conference: ICCV 2023 CVAMD Workshop

Paper | GitHub

INR in Medical Imaging Survey visual teaser

Implicit Neural Representation in Medical Imaging: A Comparative Survey

Amirali Molaei, Amirhossein Aminimehr, Armin Tavakoli, Amirhossein Kazerouni, Bobby Azad, Reza Azad, Dorit Merhof

Conference: ICCV 2023 CVAMD Workshop

Paper | GitHub

Diffusion Models in Medical Imaging Survey visual teaser

Diffusion Models in Medical Imaging: A Comprehensive Survey

Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Moein Heidari, Reza Azad, Mohsen Fayyaz, Ilker Hacihaliloglu, Dorit Merhof

Journal: Medical Image Analysis (MedIA)

Paper | GitHub

Vision Transformers in Medical Imaging Survey visual teaser

Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review

Reza Azad, Amirhossein Kazerouni, Moein Heidari, Ehsan Khodapanah Aghdam, Amirali Molaei, Yiwei Jia, Abin Jose, Rijo Roy, Dorit Merhof

Journal: Medical Image Analysis (MedIA)

Paper | GitHub

DAE-Former visual teaser

DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation

Reza Azad, RenΓ© Arimond, Ehsan Khodapanah Aghdam, Amirhossein Kazerouni, Dorit Merhof

Conference: MICCAI 2023 PRIME Workshop

Paper | GitHub

MS-Former visual teaser

MS-Former: Multi-Scale Self-Guided Transformer for Medical Image Segmentation

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Dorit Merhof

Conference: MIDL 2023 | Oral presentation

Paper | GitHub

MMCFormer visual teaser

MMCFormer: Missing Modality Compensation Transformer for Brain Tumor Segmentation

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Saeed Ebadollahi, Dorit Merhof

Conference: MIDL 2023 | Oral presentation

Paper | GitHub

HiFormer visual teaser

HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation

Moein Heidari*, Amirhossein Kazerouni*, Milad Soltany*, Reza Azad, Ehsan Khodapanah Aghdam, Julien Cohen-Adad, Dorit Merhof

Conference: IEEE/CVF WACV 2023

Paper | GitHub

Real-Time Vision-Based System visual teaser

An Intelligent Modular Real-Time Vision-Based System for Environment Perception

Amirhossein Kazerouni, Amirhossein Heydarian, Milad Soltany, Aida Mohammadshahi, Abbas Omidi, Saeed Ebadollahi

Conference: NeurIPS 2022 Workshop on Machine Learning for Autonomous Driving

Paper | GitHub

Contact

For inquiries or feedback on my research, don't hesitate to reach out. I’m always happy to hear from you and exchange ideas.